373 research outputs found

    Urine peptidomic biomarkers for diagnosis of patients with systematic lupus erythematosus

    Get PDF
    Background: Systematic lupus erythematosus (SLE) is characterized with various complications which can cause serious organ damage in the human body. Despite the significant improvements in disease management of SLE patients, the non-invasive diagnosis is entirely missing. In this study, we used urinary peptidomic biomarkers for early diagnosis of disease onset to improve patient risk stratification, vital for effective drug treatment. Methods: Urine samples from patients with SLE, lupus nephritis (LN) and healthy controls (HCs) were analyzed using capillary electrophoresis coupled to mass spectrometry (CE-MS) for state-of-the-art biomarker discovery. Results: A biomarker panel made up of 65 urinary peptides was developed that accurately discriminated SLE without renal involvement from HC patients. The performance of the SLE-specific panel was validated in a multicentric independent cohort consisting of patients without SLE but with different renal disease and LN. This resulted in an area under the receiver operating characteristic (ROC) curve (AUC) of 0.80 (p < 0.0001, 95% confidence interval (CI) 0.65–0.90) corresponding to a sensitivity and a specificity of 83% and 73%, respectively. Based on the end terminal amino acid sequences of the biomarker peptides, an in silico methodology was used to identify the proteases that were up or down-regulated. This identified matrix metalloproteinases (MMPs) as being mainly responsible for the peptides fragmentation. Conclusions: A laboratory-based urine test was successfully established for early diagnosis of SLE patients. Our approach determined the activity of several proteases and provided novel molecular information that could potentially influence treatment efficacy

    Definition of valid proteomic biomarkers: a bayesian solution

    Get PDF
    Clinical proteomics is suffering from high hopes generated by reports on apparent biomarkers, most of which could not be later substantiated via validation. This has brought into focus the need for improved methods of finding a panel of clearly defined biomarkers. To examine this problem, urinary proteome data was collected from healthy adult males and females, and analysed to find biomarkers that differentiated between genders. We believe that models that incorporate sparsity in terms of variables are desirable for biomarker selection, as proteomics data typically contains a huge number of variables (peptides) and few samples making the selection process potentially unstable. This suggests the application of a two-level hierarchical Bayesian probit regression model for variable selection which assumes a prior that favours sparseness. The classification performance of this method is shown to improve that of the Probabilistic K-Nearest Neighbour model

    Dual mTOR/PI3K inhibition limits PI3K-dependent pathways activated upon mTOR inhibition in autosomal dominant polycystic kidney disease

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the development of kidney cysts leading to kidney failure in adulthood. Inhibition of mammalian target of rapamycin (mTOR) slows polycystic kidney disease (PKD) progression in animal models, but randomized controlled trials failed to prove efficacy of mTOR inhibitor treatment. Here, we demonstrate that treatment with mTOR inhibitors result in the removal of negative feedback loops and up-regulates pro-proliferative phosphatidylinositol 3-kinase (PI3K)-Akt and PI3K-extracellular signal-regulated kinase (ERK) signaling in rat and mouse PKD models. Dual mTOR/PI3K inhibition with NVP-BEZ235 abrogated these pro-proliferative signals and normalized kidney morphology and function by blocking proliferation and fibrosis. Our findings suggest that multi-target PI3K/mTOR inhibition may represent a potential treatment for ADPKD

    Proteomics as a quality control tool of pharmaceutical probiotic bacterial lysate products

    Get PDF
    Probiotic bacteria have a wide range of applications in veterinary and human therapeutics. Inactivated probiotics are complex samples and quality control (QC) should measure as many molecular features as possible. Capillary electrophoresis coupled to mass spectrometry (CE/MS) has been used as a multidimensional and high throughput method for the identification and validation of biomarkers of disease in complex biological samples such as biofluids. In this study we evaluate the suitability of CE/MS to measure the consistency of different lots of the probiotic formulation Pro-Symbioflor which is a bacterial lysate of heat-inactivated Escherichia coli and Enterococcus faecalis. Over 5000 peptides were detected by CE/MS in 5 different lots of the bacterial lysate and in a sample of culture medium. 71 to 75% of the total peptide content was identical in all lots. This percentage increased to 87–89% when allowing the absence of a peptide in one of the 5 samples. These results, based on over 2000 peptides, suggest high similarity of the 5 different lots. Sequence analysis identified peptides of both E. coli and E. faecalis and peptides originating from the culture medium, thus confirming the presence of the strains in the formulation. Ontology analysis suggested that the majority of the peptides identified for E. coli originated from the cell membrane or the fimbrium, while peptides identified for E. faecalis were enriched for peptides originating from the cytoplasm. The bacterial lysate peptides as a whole are recognised as highly conserved molecular patterns by the innate immune system as microbe associated molecular pattern (MAMP). Sequence analysis also identified the presence of soybean, yeast and casein protein fragments that are part of the formulation of the culture medium. In conclusion CE/MS seems an appropriate QC tool to analyze complex biological products such as inactivated probiotic formulations and allows determining the similarity between lots

    Correlation studies of open and closed states fluctuations in an ion channel: Analysis of ion current through a large conductance locust potassium channel

    Full text link
    Ion current fluctuations occurring within open and closed states of large conductance locust potassium channel (BK channel) were investigated for the existence of correlation. Both time series, extracted from the ion current signal, were studied by the autocorrelation function (AFA) and the detrended fluctuation analysis (DFA) methods. The persistent character of the short- and middle-range correlations of time series is shown by the slow decay of the autocorrelation function. The DFA exponent α\alpha is significantly larger than 0.5. The existence of strongly-persistent long-range correlations was detected only for closed-states fluctuations, with α=0.98±0.02\alpha=0.98\pm0.02. The long-range correlation of the BK channel action is therefore determined by the character of closed states. The main outcome of this study is that the memory effect is present not only between successive conducting states of the channel but also independently within the open and closed states themselves. As the ion current fluctuations give information about the dynamics of the channel protein, our results point to the correlated character of the protein movement regardless whether the channel is in its open or closed state.Comment: 12 pages, 5 figures; to be published in Phys. Rev.

    Rectification in synthetic conical nanopores: a one-dimensional Poisson-Nernst-Planck modeling

    Full text link
    Ion transport in biological and synthetic nanochannels is characterized by phenomena such as ion current fluctuations and rectification. Recently, it has been demonstrated that nanofabricated synthetic pores can mimic transport properties of biological ion channels [P. Yu. Apel, {\it et al.}, Nucl. Instr. Meth. B {\bf 184}, 337 (2001); Z. Siwy, {\it et al.}, Europhys. Lett. {\bf 60}, 349 (2002)]. Here, the ion current rectification is studied within a reduced 1D Poisson-Nernst-Planck (PNP) model of synthetic nanopores. A conical channel of a few nm\mathrm{nm} to a few hundred of nm in diameter, and of few μ\mum long is considered in the limit where the channel length considerably exceeds the Debye screening length. The rigid channel wall is assumed to be weakly charged. A one-dimensional reduction of the three-dimensional problem in terms of corresponding entropic effects is put forward. The ion transport is described by the non-equilibrium steady-state solution of the 1D Poisson-Nernst-Planck system within a singular perturbation treatment. An analytic formula for the approximate rectification current in the lowest order perturbation theory is derived. A detailed comparison between numerical results and the singular perturbation theory is presented. The crucial importance of the asymmetry in the potential jumps at the pore ends on the rectification effect is demonstrated. This so constructed 1D theory is shown to describe well the experimental data in the regime of small-to-moderate electric currents.Comment: 27 pages, 7 figure

    Voltage-controlled current loops with nanofluidic diodes electrically coupled to solid state capacitors

    Full text link
    [EN] We describe experimentally and theoretically voltage-controlled current loops obtained with nanofluidic diodes immersed in aqueous salt solutions. The coupling of these soft matter diodes with conventional electronic elements such as capacitors permits simple equivalent circuits which show electrical properties reminiscent of a resistor with memory. Different conductance levels can be reproducibly achieved under a wide range of experimental conditions (input voltage amplitudes and frequencies, load capacitances, electrolyte concentrations, and single pore and multipore membranes) by electrically coupling two types of passive components: the nanopores (ionics) and the capacitors (electronics). Remarkably, these electrical characteristics do not result from slow ionic redistributions within the nanopores, which should be difficult to control and would give only small conductance changes, but arise from the robust collective response of equivalent circuits. Coupling nanoscale diodes with conventional electronic elements allows interconverting ionic and electronic currents, which should be useful for electrochemical signal processing and energy conversion based on charge transport.Support from the Ministry of Economic Affairs and Competitiveness and FEDER (project MAT2015-65011-P), the Generalitat Valenciana (project Prometeo/GV/0069 for Groups of Excellence). M. A, S. N. and W. E acknowledge the funding from the Hessen State Ministry of Higher Education, Research and the Arts, Germany, in the frame of LOEWE project iNAPO. Z. S. acknowledges the funding from the National Science Foundation (CHE 1306058).Ramirez Hoyos, P.; Gómez Lozano, V.; Cervera, J.; Nasir, S.; Ali, M.; Ensinger, W.; Siwy, Z.... (2016). Voltage-controlled current loops with nanofluidic diodes electrically coupled to solid state capacitors. RSC Advances. 6(60):54742-54746. https://doi.org/10.1039/c6ra08277gS5474254746660Fologea, D., Krueger, E., Mazur, Y. I., Stith, C., Okuyama, Y., Henry, R., & Salamo, G. J. (2011). Bi-stability, hysteresis, and memory of voltage-gated lysenin channels. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1808(12), 2933-2939. doi:10.1016/j.bbamem.2011.09.005Pustovoit, M. A., Berezhkovskii, A. M., & Bezrukov, S. M. (2006). Analytical theory of hysteresis in ion channels: Two-state model. The Journal of Chemical Physics, 125(19), 194907. doi:10.1063/1.2364898Ramirez, P., Cervera, J., Ali, M., Ensinger, W., & Mafe, S. (2014). Logic Functions with Stimuli-Responsive Single Nanopores. ChemElectroChem, 1(4), 698-705. doi:10.1002/celc.201300255Martin, C. R., & Siwy, Z. S. (2007). CHEMISTRY: Learning Nature’s Way: Biosensing with Synthetic Nanopores. Science, 317(5836), 331-332. doi:10.1126/science.1146126Hou, X., & Jiang, L. (2009). Learning from Nature: Building Bio-Inspired Smart Nanochannels. ACS Nano, 3(11), 3339-3342. doi:10.1021/nn901402bZhang, H., Tian, Y., & Jiang, L. (2016). Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels. Nano Today, 11(1), 61-81. doi:10.1016/j.nantod.2015.11.001Chun, H., & Chung, T. D. (2015). Iontronics. Annual Review of Analytical Chemistry, 8(1), 441-462. doi:10.1146/annurev-anchem-071114-040202Tagliazucchi, M., & Szleifer, I. (2015). Transport mechanisms in nanopores and nanochannels: can we mimic nature? Materials Today, 18(3), 131-142. doi:10.1016/j.mattod.2014.10.020Misra, N., Martinez, J. A., Huang, S.-C. J., Wang, Y., Stroeve, P., Grigoropoulos, C. P., & Noy, A. (2009). Bioelectronic silicon nanowire devices using functional membrane proteins. Proceedings of the National Academy of Sciences, 106(33), 13780-13784. doi:10.1073/pnas.0904850106Senapati, S., Basuray, S., Slouka, Z., Cheng, L.-J., & Chang, H.-C. (2011). A Nanomembrane-Based Nucleic Acid Sensing Platform for Portable Diagnostics. Topics in Current Chemistry, 153-169. doi:10.1007/128_2011_142Haywood, D. G., Saha-Shah, A., Baker, L. A., & Jacobson, S. C. (2014). Fundamental Studies of Nanofluidics: Nanopores, Nanochannels, and Nanopipets. Analytical Chemistry, 87(1), 172-187. doi:10.1021/ac504180hPérez-Mitta, G., Tuninetti, J. S., Knoll, W., Trautmann, C., Toimil-Molares, M. E., & Azzaroni, O. (2015). Polydopamine Meets Solid-State Nanopores: A Bioinspired Integrative Surface Chemistry Approach To Tailor the Functional Properties of Nanofluidic Diodes. Journal of the American Chemical Society, 137(18), 6011-6017. doi:10.1021/jacs.5b01638Ali, M., Nasir, S., Ramirez, P., Ahmed, I., Nguyen, Q. H., Fruk, L., … Ensinger, W. (2011). Optical Gating of Photosensitive Synthetic Ion Channels. Advanced Functional Materials, 22(2), 390-396. doi:10.1002/adfm.201102146Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., & Ensinger, W. (2013). Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels. The Journal of Physical Chemistry C, 117(35), 18234-18242. doi:10.1021/jp4054555Ali, M., Ahmed, I., Nasir, S., Ramirez, P., Niemeyer, C. M., Mafe, S., & Ensinger, W. (2015). Ionic Transport through Chemically Functionalized Hydrogen Peroxide-Sensitive Asymmetric Nanopores. ACS Applied Materials & Interfaces, 7(35), 19541-19545. doi:10.1021/acsami.5b06015Albrecht, T. (2011). How to Understand and Interpret Current Flow in Nanopore/Electrode Devices. ACS Nano, 5(8), 6714-6725. doi:10.1021/nn202253zLemay, S. G. (2009). Nanopore-Based Biosensors: The Interface between Ionics and Electronics. ACS Nano, 3(4), 775-779. doi:10.1021/nn900336jGomez, V., Ramirez, P., Cervera, J., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2015). Charging a Capacitor from an External Fluctuating Potential using a Single Conical Nanopore. Scientific Reports, 5(1). doi:10.1038/srep09501Ramirez, P., Gomez, V., Cervera, J., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2015). Energy conversion from external fluctuating signals based on asymmetric nanopores. Nano Energy, 16, 375-382. doi:10.1016/j.nanoen.2015.07.013Tybrandt, K., Forchheimer, R., & Berggren, M. (2012). Logic gates based on ion transistors. Nature Communications, 3(1). doi:10.1038/ncomms1869Apel, P. (2001). Track etching technique in membrane technology. Radiation Measurements, 34(1-6), 559-566. doi:10.1016/s1350-4487(01)00228-1Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039fRamirez, P., Gomez, V., Verdia-Baguena, C., Nasir, S., Ali, M., Ensinger, W., & Mafe, S. (2016). Designing voltage multipliers with nanofluidic diodes immersed in aqueous salt solutions. Physical Chemistry Chemical Physics, 18(5), 3995-3999. doi:10.1039/c5cp07203dWang, D., Kvetny, M., Liu, J., Brown, W., Li, Y., & Wang, G. (2012). Transmembrane Potential across Single Conical Nanopores and Resulting Memristive and Memcapacitive Ion Transport. Journal of the American Chemical Society, 134(8), 3651-3654. doi:10.1021/ja211142eMomotenko, D., & Girault, H. H. (2011). Scan-Rate-Dependent Ion Current Rectification and Rectification Inversion in Charged Conical Nanopores. Journal of the American Chemical Society, 133(37), 14496-14499. doi:10.1021/ja2048368Zhang, A., & Lieber, C. M. (2015). Nano-Bioelectronics. Chemical Reviews, 116(1), 215-257. doi:10.1021/acs.chemrev.5b0060

    The design and characterization of multifunctional aptamer nanopore sensors

    Get PDF
    Aptamer-modified nanomaterials provide a simple, yet powerful sensing platform when combined with resistive pulse sensing technologies. Aptamers adopt a more stable tertiary structure in the presence of a target analyte, which results in a change in charge density and velocity of the carrier particle. In practice the tertiary structure is specific for each aptamer and target, and the strength of the signal varies with different applications and experimental conditions. Resistive pulse sensors (RPS) have single particle resolution, allowing for the detailed characterization of the sample. Measuring the velocity of aptamer-modified nanomaterials as they traverse the RPS provides information on their charge state and densities. To help understand how the aptamer structure and charge density effects the sensitivity of aptamer-RPS assays, here we study two metal binding aptamers. This creates a sensor for mercury and lead ions that is capable of being run in a range of electrolyte concentrations, equivalent to river to seawater conditions. The observed results are in excellent agreement with our proposed model. Building on this we combine two aptamers together in an attempt to form a dual sensing strand of DNA for the simultaneous detection of two metal ions. We show experimental and theoretical responses for the aptamer which creates layers of differing charge densities around the nanomaterial. The density and diameter of these zones effects both the viability and sensitivity of the assay. While this approach allows the interrogation of the DNA structure, the data also highlight the limitations and considerations for future assays

    Seminal plasma as a source of prostate cancer peptide biomarker candidates for detection of indolent and advanced disease

    Get PDF
    Background:Extensive prostate specific antigen screening for prostate cancer generates a high number of unnecessary biopsies and over-treatment due to insufficient differentiation between indolent and aggressive tumours. We hypothesized that seminal plasma is a robust source of novel prostate cancer (PCa) biomarkers with the potential to improve primary diagnosis of and to distinguish advanced from indolent disease. <br>Methodology/Principal Findings: In an open-label case/control study 125 patients (70 PCa, 21 benign prostate hyperplasia, 25 chronic prostatitis, 9 healthy controls) were enrolled in 3 centres. Biomarker panels a) for PCa diagnosis (comparison of PCa patients versus benign controls) and b) for advanced disease (comparison of patients with post surgery Gleason score <7 versus Gleason score >>7) were sought. Independent cohorts were used for proteomic biomarker discovery and testing the performance of the identified biomarker profiles. Seminal plasma was profiled using capillary electrophoresis mass spectrometry. Pre-analytical stability and analytical precision of the proteome analysis were determined. Support vector machine learning was used for classification. Stepwise application of two biomarker signatures with 21 and 5 biomarkers provided 83% sensitivity and 67% specificity for PCa detection in a test set of samples. A panel of 11 biomarkers for advanced disease discriminated between patients with Gleason score 7 and organ-confined (<pT3a) or advanced (≥pT3a) disease with 80% sensitivity and 82% specificity in a preliminary validation setting. Seminal profiles showed excellent pre-analytical stability. Eight biomarkers were identified as fragments of N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase​,prostatic acid phosphatase, stabilin-2, GTPase IMAP family member 6, semenogelin-1 and -2. Restricted sample size was the major limitation of the study.</br> <br>Conclusions/Significance: Seminal plasma represents a robust source of potential peptide makers for primary PCa diagnosis. Our findings warrant further prospective validation to confirm the diagnostic potential of identified seminal biomarker candidates.</br&gt
    corecore